

Efforts to Characterize Ground Water Quality in Indiana through the Statewide Ground Water Monitoring Network

Kevin Spindler
Mitt Denney
James Sullivan

Indiana Department of Environmental Management - Office of Water Quality

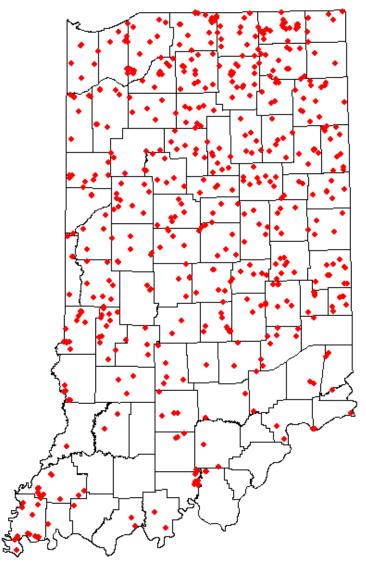
Drinking Water Branch, Ground Water Section

Funding

- Statewide Ground Water Monitoring Network (GWMN) made possible in part by the Clean Water Act Section 106 funding
- Sampling of ground waters across the state seeks to determine the following:
 - How ground water may affect the quality of surface waters
 - The recharge/discharge relationships of ground water including surface water/ground water interaction
 - How source water and drinking water supplies can best be protected by utilizing data derived from a comprehensive approach to assessment and monitoring

Goals of the GWMN

- Determine ambient quality of ground water of the state by sampling private residential wells and public water supply wells across Indiana
- Characterize the ground water quality in hydrogeologic settings so that predictions about the ground water resources can be made
- Provide the public with access to the data
 - Participants
 - Interested groups


GWMN Site Locations

• 607 sites sampled since 2008

- 359 private well sites (residential)
- 248 public well sites (non-community, such as churches, schools, businesses)

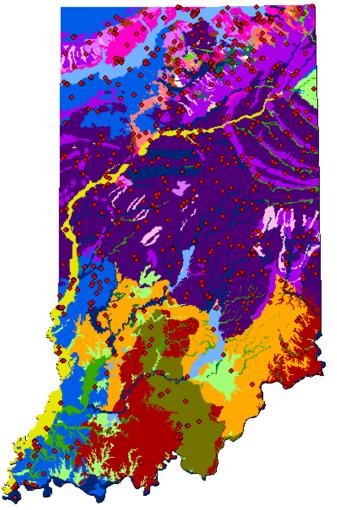
Site selection during initial rounds

- Previous sampling networks
- Ground water availability/population
- Corresponding well log required

GWMN and Hydrogeologic Settings

Hydrogeologic Settings

- Indiana Geological Survey classification scheme providing settings to help interpret the occurrence, movement and sensitivity to contamination of ground water (Fleming et al., 1995)
- Over 240 settings, narrowed down into 20 "general" settings, such as Till Plain, Alluvial Valley, etc.


Aquifer Sensitivity

• High: 289 sites

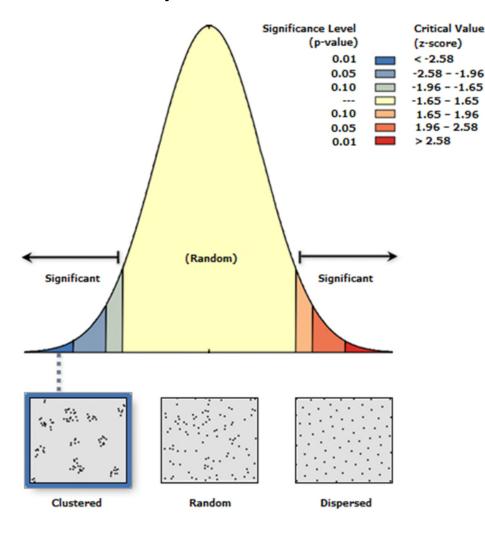
Moderate: 104 sites

• Low: 176 sites

Variable: 38 sites

GWMN, Phase 1

- Consisted of five rounds of sampling between 2008 and 2012
- Limited trend sampling
- Spatial distribution of sampling locations was not random
 - Clustering of sample sites
 - Some aquifer types/settings over/underrepresented



Protecting Hoosiers and Our Environment Since 19

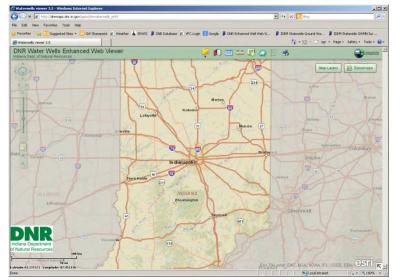
Office of Water Quality

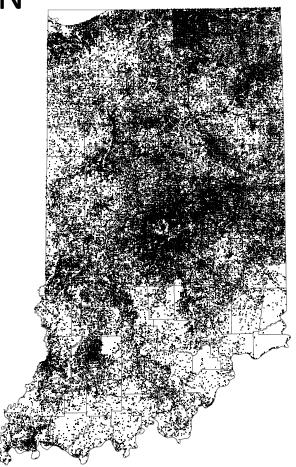
Spatial Statistics of the GWMN

Average nearest neighbor summary results

Nearest Neighbor Ratio: 0.596307

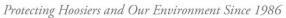
z-score: -6.368484


p-value: 0.000000



2013 Revised Design of the GWMN

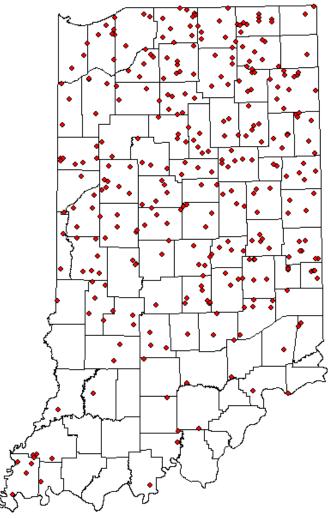
 Sample population consists of all 146,507 drinking water wells in the Department of Natural Resources database that have a located well log


Revised Design of the GWMN

 Used a simplified version of the Yamane (1967) formula to calculate the number of samples needed to represent the sample population

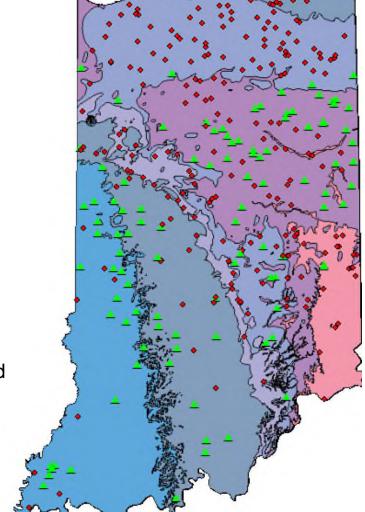
$$n = \frac{N}{(1 + N(e)^2)}$$
 Where: n = sample size N = total population e = level of precision (95%)

- From this, the statewide drinking water well population can be represented by 398 samples
- The samples will be proportionally distributed through the 20 lumped hydrogeologic settings through stratified sampling


Geologic Setting	Located DNR Wells	% Located Per Setting	Weighted Sample Size
Ablation Sequence	1,604	1.09%	4.37
Alluvial Valley	1,894	1.29%	5.16
Dissected Bedrock	1,945	1.33%	5.30
Dissected Bedrock Thin Till	6,397	4.37%	17.42
Fan Head Complex	1,859	1.27%	5.06
Ice Contact Deposits	386	0.26%	1.05
Karst Plain and Escarpment	3,500	2.39%	9.53
Lake Deposits	2,093	1.43%	5.70
Meltwater Channel	380	0.26%	1.03
Outwash Complex	1,959	1.34%	5.33
Outwash Plain	8,298	5.66%	22.59
Sand Plains and Loess Sands	11,732	8.01%	31.94
Sluiceway or Discrete Channel	12,723	8.68%	34.64
Till Capped Fan	3,271	2.23%	8.91
Till Cored Moraine	16,168	11.04%	44.02
Till Plain	56,234	38.38%	153.11
Trough System	1,549	1.06%	4.22
Tunnel Valley	3,682	2.51%	10.03
Unconfined Outwash Fan	6,410	4.38%	17.45
Wabash River Valley	4,330	2.96%	11.79

2013 GWMN Network Design

- 198 sites that were previously sampled as part of the GWMN were retained
 - Randomly selected by lumped and individual hydrogeologic setting
- 132 additional sampling sites were identified and brought into the network
- 330 sites sampled in 2013 as part of Round 6



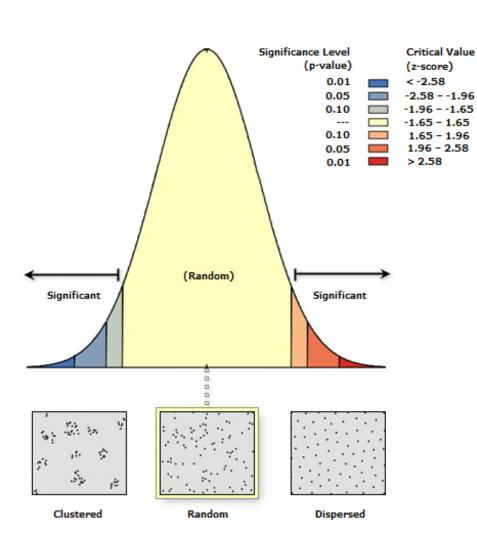
Protecting Hoosiers and Our Environment Since 1986

Office of Water Quality

Bedrock Aquifer Sampling

Sampled, Bedrock

Sampled, Unconsolidated



Protecting Hoosiers and Our Environment Since 1986

Office of Water Quality

2013 Spatial Statistics of GWMN

Nearest Neighbor Ratio: 0.975788

z-score: -0.845248 p-value: 0.397972

Given the z-score of -0.99, the pattern does not appear to be significantly different from random.

Sampling the Sites: Field Parameters

- Purge well for ~ 15 minutes
- Field Parameters

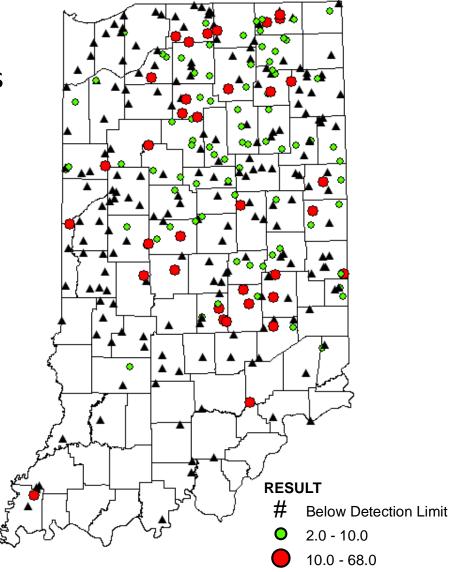
Temperature, Specific Conductivity, Dissolved Oxygen, pH, Oxidation

Reduction Potential

Sampling the Sites: Analytical Parameters

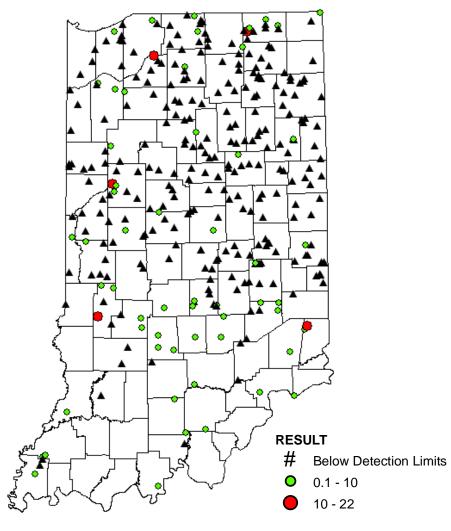
- Analytical Parameters
 - Unfiltered: Volatile Organic Compounds, Synthetic Organic Compounds, Pesticides, Unregulated Pesticide Degradates
 - Filtered: Metals, Inorganic Ions, Alkalinity, Nitrate-Nitrite

2013 Results


- Number of samples collected: 330
- Still have 68 samples to collect to complete the 1st round of statistically based sampling
- Most samples did not have notable contamination

2013 Arsenic Results

- Arsenic detected in 120 samples (36%)
 - 30% of detections in high sensitivity aquifers
 - 44% in low sensitivity aquifers
- Exceeds the U.S Environmental Protection Agency (U.S. EPA)
 Maximum Contaminant Level (MCL) of 10 ppb in 36 samples (11%)



2013 Nitrogen, Nitrate-Nitrite Results

- Nitrogen, Nitrate-Nitrite detected in 35% of samples
 - 49% of detections in high sensitivity aquifers
 - 30% of detection in low sensitivity aquifers
- Exceeds the U.S. EPA MCL of 10 mg/l in 5 samples (1.5%)

2014 GWMN Activities

- Collect the remaining samples needed to complete Round 6
- Bring new sites into the network to complete an additional round of statistically based sampling
 - Sign-ups a challenge
 - GWMN website

The control of the co

Contact

Kevin Spindler

(317) 234-3243

kspindle@idem.IN.gov

James Sullivan

(317) 234-7476

jsulliva@idem.IN.gov

www.idem.IN.gov/6762.htm